14. Show that if S_1 and S_2 are arbitrary subsets of a vector space V, then $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$. (The sum of two subsets is defined in the exercises of Section 1.3.)

Proof.

"c": ∀ v ∈ span (S, USz), then $\exists V_1, \dots, V_m \in S_1 \cup S_2$, such that $U = a_1 V_1 + \cdots + a_m V_m$, where $a_1, \cdots, a_m \in \mathbb{F}$. Without loss of generality, we can assume that $U_1, \dots, U_n \in S_1$, and $U_{n+1}, \dots, U_m \in S_2$, where $0 \le n \le m$. thus $\sum_{i=1}^{n} a_i V_i \in \text{Span}(S_1)$ and $\sum_{i=n+1}^{m} a_i V_i \in \text{Span}(S_2)$ So $U = \sum_{i=1}^{N} a_i U_i + \sum_{i=h+1}^{m} a_i U_i \in Span(S_1) + Span(S_2)$

Thus $Span(S_1 \cup S_2) \subseteq Span(S_1) + Span(S_2)$

 $\underline{\mathfrak{S}}^{\prime}: \quad \underline{\text{Method 1}}: \\ \forall \quad \forall \in \operatorname{Span}(S_{1}) + \operatorname{Span}(S_{2}), \quad \text{then} \quad \exists \quad \forall_{1} \in \operatorname{Span}(S_{1}),$ and $V_2 \in Span(S_2)$, such that $U = V_1 + V_2$.

We write $U_l = \hat{u}_{ll} U_{ll} + w + a_{lm} U_{lm}$, where $U_{li} \in S_l$, i = l, w, m V2 = A21 V21 + ... + A2n V2n, where V2i € S2, 2=1,..., n. Here air, azi ∈ F, i=1,..., m, j=1,..., n.

Then we have $U = U_1 + V_2 = \sum_{i=1}^{m} a_{ii} V_{ii} + \sum_{i=1}^{n} a_{2j} V_{2j}$

As VII, ..., VIM, V21, ..., V2n € SIUS2, we have that $U \in Span(S_1 \cup S_2)$. So $Span(S_1 \cup S_2) \supseteq Span(S_1) + Span(S_2)$.

J": Method 2.

For $\bar{i}=1,2$, $S_{\bar{i}} \subseteq S_1 \cup S_2 \Rightarrow Span(S_{\bar{i}}) \subseteq Span(S_1 \cup S_2)$. \Rightarrow span (S_1) + span (S_2) \subseteq span $(S_1 \cup S_2)$ + span $(S_1 \cup S_2)$ = span (SIUSz)

Because span(S, USz) is a subspace of V, which is dosed under addition.

15. Let S_1 and S_2 be subsets of a vector space V . Prove that span $(S_1 \cap S_2) \subseteq$	
	$\operatorname{span}(S_1) \cap \operatorname{span}(S_2)$. Give an example in which $\operatorname{span}(S_1 \cap S_2)$ and $\operatorname{span}(S_1) \cap \operatorname{span}(S_2)$ are equal and one in which they are unequal.
	span(\mathcal{S}_1) (span(\mathcal{S}_2) are equal and one in which they are unequal.

Since
$$S_1 \cap S_2 \subseteq S_{\bar{i}}$$
, $i=1,2$,
 $span(S_1 \cap S_2) \subseteq Span(S_{\bar{i}})$, $i=1,2$
 $\Rightarrow span(S_1 \cap S_2) \cap Span(S_1 \cap S_2) \subseteq Span(S_1) \cap Span(S_2)$
 $= span(S_1 \cap S_2)$

"=" = When
$$S_1 = S_2$$
, then $Span(S_1 \cap S_2) = Span(S_1)$
and $Span(S_1) \cap Span(S_2) = Span(S_1)$

"\frac{1}{2} = Let
$$V = IR^2$$
 and $S_1 = \{(0, 1)\}$, $S_2 = \{(0, 2)\}$, then $S_1 \cap S_2 = \emptyset$, $S_3 = \{(0, 1)\}$, $S_4 = \{(0, 1)\}$.

Note: span (S) is defined to be the smallest subspace containing S, so if
$$S=\phi$$
, then span $(\phi)=\{0\}$.

While span
$$(\{(0,1)\}) = \{(0,y): y \in IR\} = \text{span}(\{(0,2)\})$$

So $= \text{span}(S_1) \cap \text{span}(S_2) = \{(0,y): y \in IR\}$
 $= \text{span}(S_1 \cap S_2) = \{0\}.$

	7 Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but U is not a subspace of \mathbb{R}^2 .
Solution:	Let $U = \{(n,n): n \in \mathbb{Z} \}$, here \mathbb{Z} denotes the set of all integers.

Then obviously
$$U$$
 is closed under taking additive inverse, $-(n,n) = (-n,-n) \in U$

And
$$\forall$$
 (m,m) , $(n,n) \in \mathcal{T}$, $(m,m) + (n,n) = (m+n, m+n) \in \mathcal{T}$.

But for
$$\lambda \in \mathbb{R}$$
 where λ is not any integer, $\lambda(1,1) = (\lambda,\lambda) \neq \mathcal{T}$.

8 Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .

Solution: Let
$$U = \{(x,0), (0,y): x, y \in \mathbb{R} \}$$

then V is closed under scalar multiplication.

but for
$$(\chi,0)$$
, $(0,y) \in \mathcal{T}$ where $\chi \neq 0$, $\chi \neq 0$

the addition
$$(x,0) + (0,y) = (x,y) \notin U$$
.

#

$$U = \{(x, y, x + y, x - y, 2x) \in \mathbf{F}^5 : x, y \in \mathbf{F}\}.$$

Find a subspace W of \mathbf{F}^5 such that $\mathbf{F}^5 = U \oplus W$.

Solution:

The zero vector
$$\vec{0}$$
 in \vec{F}^5 is $\vec{0} = (0,0,0,0,0)$.

For
$$x, y \in F$$
, $(x, y, x+y, x-y, 2x)$
= $(x, 0, x, x, 2x) + (0, y, y, -y, 0)$
= $x(1,0,1,1,2) + y(0,1,1,-1,0)$
= U_1

Thus U_1, U_2 are linearly independent and $U = \text{Span}\{V_1, V_2\}$. So Can we find $U_3, V_4, V_5 \in \mathbb{F}$, such that $\mathbb{F}^5 = \text{Span}\{V_1, V_2\}$ \bigoplus Span $(\{V_3, V_4, V_5\})$... $(\{V_3, V_4, V_5\})$...

(\$1) means \forall (\$1,..., \$5) \in \mathbb{F}^5 , there exist unique $(b_1,...,b_5) = \sum_{i=1}^{5} \chi_i V_i$.

that is,
$$\binom{b_1}{\vdots} = (V_1^{\intercal} \dots V_5^{\intercal}) \binom{x_1}{x_5}$$
 has unique solution.

So we can construct V_3 , V_4 , V_5 such that the sxs matrix $\begin{pmatrix} V_1 \\ \vdots \\ V_5 \end{pmatrix}$ is a triangular matrix, which

can make (\$2) easy to solve. A simple one is

